Delay-Dependent Conditions for Robust Absolute Stability of Uncertain Time-delay Systems

نویسندگان

  • Li Yu
  • Qing-Long Han
  • Shiming Yu
  • Jinfeng Gao
چکیده

This paper is concerned with the robust absolute stability analysis problem for a class of uncertain time-delay systems with nonlinearities satisfying a given sector condition. Based on the Lyapunov stability theory and the linear matrix inequality (LMI) approach, a delay-dependent sufficient condition for the robust absolute stability is derived and is expressed as the feasibility problem of a certain LMI system. A maximum upper bound of the allowable delay is obtained by solving a convex optimization problem. Finally, a numerical example is given to illustrate the proposed results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Robust Stability Criteria for Uncertain Neutral Time-Delay Systems With Discrete and Distributed Delays

In this study, delay-dependent robust stability problem is investigated for uncertain neutral systems with discrete and distributed delays. By constructing an augmented Lyapunov-Krasovskii functional involving triple integral terms and taking into account the relationships between the different delays, new less conservative stability and robust stability criteria are established first using the...

متن کامل

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

Delay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems

In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...

متن کامل

Delay-dependent robust stabilization and $H_{infty}$ control for uncertain stochastic T-S fuzzy systems with multiple time delays

In this paper, the problems of robust stabilization and$H_{infty}$ control for uncertain stochastic systems withmultiple time delays represented by the Takagi-Sugeno (T-S) fuzzymodel have been studied. By constructing a new Lyapunov-Krasovskiifunctional (LKF) and using the bounding techniques, sufficientconditions for the delay-dependent robust stabilization and $H_{infty}$ control scheme are p...

متن کامل

ROBUST $H_{infty}$ CONTROL FOR T–S TIME-VARYING DELAY SYSTEMS WITH NORM BOUNDED UNCERTAINTY BASED ON LMI APPROACH

In this paper we consider the problem of delay-dependent robustH1 control for uncertain fuzzy systems with time-varying delay. The Takagi–Sugeno (T–S) fuzzy model is used to describe such systems. Time-delay isassumed to have lower and upper bounds. Based on the Lyapunov-Krasovskiifunctional method, a sufficient condition for the existence of a robust $H_{infty}$controller is obtained. The fuzz...

متن کامل

Development of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS

In this paper‎, ‎a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance‎. ‎The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances‎. ‎The continuous system with time-delay is discretized using uncertainty po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003